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Note 

The Effect of Nonzero V . B on the Numerical Solution 
of the Magnetohydrodynamic Equations* 

It has been observed that even very small errors in satisfying the equation 

V.B=O (1) 

cause large errors in the solution of the magnetohydrodynamic equations when the 
equations are written in conservation form [l]. These errors are due to a formulation 
of the magnetic force in which numerical errors in the solution of Eq. (1) appear as a 
force parallel to the field. In this note, we show that the nonphysical parallel force is 
effectively eliminated, even when V . B Y’- 0, by writing the momentum equation in 
nonconservation form. The resulting formulation retains the conservation form of 
the induction and the energy equations. 

In numerical calculations, V . B is typically small, but not zero. Nevertheless, 
difference equations are usually written to approximate magnetohydrodynamic 
equations in conservation form [I, 21, a form which is only correct when V B = 0. 
While V . B = 0 initially, errors in the difference equations cause V * B to evolve as 
given by 

$ (V . B) = 0 + O(dxnL, /&), (2) 

where m, n 3 1. When V . B # 0, the magnetohydrodynamic equations are not in 
conservation form. The statement of magnetic flux conservation [3] and the momen- 
tum equation are written 

g + V x (u x B) + u(V . B) = 0, (3) 

p 2 = -VP - B x (V x B), 

where B is the magnetic field intensity, u the fluid velocity, p the mass density, and p 
the fluid pressure. Neither of these equations is in conservation form. Likewise, when 
Eqs. (3) and (4) are combined with the continuity equation 

8 + v * (pu) = 0 / (5) 
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to evaluate the energy integral 

= jdV /v . [- (p + ; B . B/p) u + B(B . u) 

-(B.u)V.B 

one finds the energy integral is not in conservation form. As a consequence, when 
V B # 0, the magnetic flux, momentum, and energy of an isolated system are not 
constants of the motion. When V . B = 0, Eq. (3) is obviously in conservation form, 
and the magnetic force in Eq. (4) can be written as the divergence of the Maxwell 
stress tensor 

F = ‘t . (-$(B . B)/I + BB]. (7) 

where I is the unit matrix. 
When these equations are differenced, magnetic flux, energy, and momentum are 

constants of the motion even when V . B # 0. 
Since V B = O(dxl)l, fit”), both difference formulations are consistent with the 

differential equations with V . B = 0, which are the ones we wish to solve, but it 
would seem that the conservation form is preferable. However, exact conservation 
form may be imperative only for high-speed flows where Rankine-Hugoniot condi- 
tions across shocks would not be satisfied otherwise. In problems which are charac- 
terized by low-speed flow so that the equations must be integrated for many signal 
transit times, as in instability calculations for low-beta plasmas or calculations of 
equilibria, the conservation form of the momentum equation may be inappropriate. 
The difficulty is that the projection of the magnetic force given by Eq. (7) onto the 
magnetic field is not zero when V . B f 0. Rather, it is proportional to V ,B and is 
given by [4] 

F.B=(B.B)V.B. (8) 

Since V . B itself is a numerical error proportional to B, the error in the force relative 
to the fluid velocity will be the greater the lesser the fluid velocity is relative to the 
Alfven speed. Furthermore, in a numerical equilibrium solution B . Vp will not be 
zero unless V . B = 0. In some instances, the variation in V . B may be such that no 
numerical equilibrium exists. 

Just what can happen in a numerical equilibrium calculation with the momentum 
equation in conservation form is illustrated in Fig. I. The evolution of a uniform 
plasma in a uniform magnetic field has been represented on a two-dimensional, 
initially rectilinear, Lagrangian computation mesh. As described in several earlier 
papers [4, 51, the method of solution is implicit, and mass, momentum, magnetic flux, 
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FIG. 1. The computation mesh for a Lagrangian calculation without correction for V * B # 0 
is shown after 209 time steps, corresponding to 160 signal transit times across the mesh. The axis 
of symmetry coincides with the left boundary; the velocity, u, is zero on the top, right, and bottom 
boundaries. The initial field is parallel to the axis and uniform. The plasma beta is 1.3 x 1O-8. The 
displacements of the vertices of the mesh are parallel to the magnetic field, and result from velocities 
approximately equal to 2 x 1O-S times the Alfven speed. 

and energy are conserved for all values of V . B. Although the formulation is 
Lagrangian, it is equivalent to the Eulerian conservation form outlined above. 

After 160 signal transit times, flow velocities equal to 1O-2 times the Alfven speed 
have developed aligned with the magnetic field and have deformed the Lagrangian 
mesh as shown in Fig. 1. This flow has no physical cause, and it eventually inverts 
cells and terminates the calculation. Yet, the flow corresponds to rather small errors 
relative to B in the solution of the equation V B = 0. In this case, the attempt to 
impose momentum conservation on a numerical solution when V . B is not zero 
caused significant and unacceptable derivation from physical behavior. 

To eliminate the parallel force, one can formulate the magnetohydrodynamic 
equations in terms of fluxes for which V . B = 0 automatically. One can also solve for 
a potential, 4, from the equation 

v%$ -c V.B=O. 

and define a new magnetic field, B’ = B + V$ for which V . B’ = 0. However, one 
can eliminate the parallel force without having to solve a potential problem by dif- 
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ferencing the nonconservative form of the momentum equation, Eq. (4). This equation 
is consistent with energy conservation if we write the induction equation in conserva- 
tion form, 

$$ + v x (u x B) = 0. 

When Eqs. (4) and (9) are combined, the energy integral may be written 

=S~VV.[-(~+~B.B/~)+B(B.~)] (10) 

This equation, together with Eqs. (4), (5), and (9), comprise a system for which energy 
and magnetic flux are constants of the motion, momentum is conserved to 
O(dx”, At”), and F . B is zero for all V . B. 

The results of a numerical calculation in which the uniform plasma case has been 
repeated with the nonconservation form of the momentum equation are shown in 

. 

FIG. 2. The computation mesh for a Lagrangian calculation with corrections for V - B # 0 is 
shown after 171 time steps, corresponding to 300 signal transit times across the mesh. The initial 
and boundary conditions are identical to those for the calculation shown in Fig. 1. No distortion 
of the mesh is evident, indicating that all velocities are very small. 
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Fig. 2. After 300 signal transit times across the mesh, the mesh appears undistorted. 
Small random velocities have developed, but the kinetic energy is only l/4000 as much 
as it is with the conservative formulation and remaining constant. In this case, refor- 
mulation of the momentum equation eliminated the nonphysical behavior and brought 
the numerical solution much closer to the correct one. 

Some other results using the conservation form of the momentum equation suggest 
a similar problem to the one we have encountered. In an explicit calculation [2] using 
leapfrog and Lax-Wendroff time differencing, the residual kinetic energy was de- 
creased by IO3 when the 0 . B error was corrected. This suggests that reformulating 
the momentum equation in a form which eliminates the parallel magnetic force is of 
universal importance in computational magnetohydrodynamics. 

REFERENCES 

1. K. V. ROBERTS AND D. E. POTTER, Me& Cornput. Phys. 9 (1968), 339. 
2. E. TURKEL, private communication, New York University (1979). 
3. N. PANOFSKY AND M. PHILLIPS, “Classical Electricity and Magnetism,” p. 162, Addison-Wesley, 

Reading, Mass., 1962. 

4. D. C. BARNES AND J. U. BRACKBILL, Nucl. Sci. Eng. 64 (1977), 18. 
5. J. U. BRACKBILL, M&I. Cumput. Phys. 16 (1976), 1. 

RECEIVED: October 31, 1978; REVISED: May 22, 1979 

J. U. BRACKBILL AND D. C. BARNES 

Los Alamos Scientific Laboratory 
University of California 

Los Alamos, New Mexico 87545 


